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Abstract.

Qualitative coding of large datasets has been a valuable tool for qualita-
tive researchers. In terms of inter-rater reliability, existing metrics have not
evolved to fit current approaches, presenting a variety of restrictions. In this
paper, we propose Generalized Cohen’s kappa, a novel IRR metric that can be
applied in a variety of qualitative coding situations, such as variable number of
coders, texts, and non-mutually exclusive categories. We show that under the
preconditions for Cohen’s kappa, GCK performs very similarly, thus demon-
strating their interchangeability. We then extend GCK to the aforementioned
situations and demonstrate it to be stable under different permutations.

Keywords: Inter-rater reliability · Cohen’s kappa · Generalized Cohen’s kappa
· Qualitative Coding.

1 Introduction

A key component of qualitative research is qualitative coding of data, classifying
textual, or other often human-generated items into nominal categories for future
analysis [4]. To account for individual subjectivites, multiple researchers often
encode the same dataset. It is thus useful to have a standardized metric of
evaluating the overall agreement between coders.

This metric is called inter-rater reliability (IRR), which considers agreements
and disagreements between coders to produce an overall score, usually between 0
and 1. Though several IRR metrics exist, most commonly used is Cohen’s kappa
[6], which measures agreement between two coders using mutually exclusive cat-
egories. For more than two coders, Fleiss’ kappa [10] achieves the same goal,
while Krippendorff’s alpha [18] can be used for situations where coders encode
unequal amounts of data.

However, one limitation of all these metrics is their inability to accommo-
date taxonomies of non-mutually exclusive categories. This is a major shortfall,
since non-mutually exclusive categories can arise fairly commonly in taxonomies
[2,12,13]. Furthermore, no single IRR metric currently exists that accommodates
a variety of qualitative coding situations, such as a variable number of coders,
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coders encoding unequal amounts of data, and using non-mutually exclusive cat-
egories. Since their inceptions, commonly used IRR metrics have not evolved to
accommodate such modern qualitative coding situations [1,9,14,23], and there
exists a need for a novel IRR metric that is robust enough to do so, yet perform-
ing similarly enough to current metrics under their preconditions.

We introduce the Generalized Cohen’s Kappa (GCK), which aims to achieve
this. Through Monte Carlo (MC) simulations, we first establish that this metric
performs similarly to Cohen’s kappa under the preconditions of the latter. We
then show how it can be applied to taxonomies of non-mutually exclusive cate-
gories, and show how it is robust enough to handle variable numbers of coders
encoding unequal amounts of data. In addition to reporting an overall kappa
score per combination and overall, GCK also reports on agreement per category
and different combinations of coders. We establish GCK as a viable and reliable
IRR metric.

2 Related Work

2.1 Inter-rater Reliability

Inter-rater reliability (IRR) is a statistical measurement, defined as “the extent
to which the variance in the ratings is attributable to differences among the ob-
jects rated.” [22] IRR metrics provide an artifact of measuring consensus (or lack
thereof) between coders [19], also accomodating for chance agreements [6,14]. An
IRR score of 1 is considered as perfect agreement and a score of 0 is considered
agreement by chance, meaning that all raters randomly coded the data. Table 1
shows an interpretation of IRR scores, which also applies to all the IRR metrics
presented in this paper.

Table 1: Interpretation of the IRR scores.
IRR score Interpretation
< 0.00 Poor agreement
0.00 to 0.20 Slight agreement
0.21 to 0.40 Fair agreement
0.41 to 0.60 Moderate agreement
0.61 to 0.80 Substantial agreement
0.81 to 1.00 Almost perfect

One of the first IRR metrics is Scott’s pi [21], which “measures the reliability
of classifying a large number of responses into nominal scale categories.” This
metric considers both observed and chance agreement between two coders with
equal probabilities of using any of the mutually exclusive categories.

Soon after, Cohen’s kappa [6] was introduced and quickly rose to become
the most used IRR metric. It is defined as “the proportion of joint judgments in
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which there is agreement after chance agreement is excluded” [6]. While they are
defined similarly, Cohen’s kappa considers the distribution of responses between
coders differently than Scott’s pi.

After Cohen’s kappa was introduced, there was a need for a metric that could
accommodate more than two coders. Fleiss’ kappa [10] resolved this need, with
the constraint that all coders must have coded the same number of data points.
Krippendorff’s alpha [18] is robust enough to accommodate situations where
coders encode different amounts of data.

A common criticism of these IRR metrics is their lack of usability for tax-
onomies of non-mutually exclusive categories [9,14]. To overcome this limitation,
Kirilenko and Stepchenkova [17] proposed a fuzzy kappa, extending Cohen’s
kappa to non-mutually exclusive categories with only two users. The authors
clarify that further investigation and testing is needed for this metric to be used.

Even with the existence of this metric, there is still an absence of a sin-
gle IRR metric that accommodates coders working with non-mutually exclusive
categories, while encoding unequal amounts of data. For instance, consider a
situation where a large dataset of tweets is being encoded for emotions (which
can be non-mutually exclusive i.e. people can be expressing multiple emotions
in the same tweet) by a team of coders encoding unequal numbers of tweets.

Currently, no single IRR metric can measure the many different levels of
agreement that can occur in such a situation. Brooks et al. [3] attempted to
bridge this gap for their purpose. Extending their work, GCK uses a MC simu-
lation, similar to prior work [5,16], and a novel approach of observed agreement
calculation.

2.2 Cohen’s kappa

Our proposed metric builds on Cohen’s kappa [6], which calculates IRR between
two coders using C mutually-exclusive categories over N items. It first calcu-
lates observed agreement (ρo) and chance agreement (ρe). Observed agreement
is the proportion of items in which both coders agree, calculated by counting
the number of items where both coders used the same category divided by the
total number of items i.e.

ρo =
#items in agreement

N
(1)

Chance agreement is the proportion of items for which agreement is expected
by chance. This is calculated by adding the probability that both coders use the
same category, which is obtained by multiplying the probability of each coder
using that category, for each category:

ρe =
1

N2

N∑
k=1

nk1nk2 (2)

where k is a category and nki is the number of times coder i used category k over
the N items. The kappa score (κ) is the proportion of agreement after chance
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agreement is removed. This is calculated using:

κ =
ρo − ρe
1 − ρe

(3)

where ρo, ρe ϵ [0, 1]. For complete agreement, ρo = 1 and ρe = 0, producing
κ = 1. In unlikely cases of agreement less than chance, we obtain κ < 0.

3 Methods

3.1 Definition of Agreement

For GCK, we must establish definitions of agreement, based on whether data
is being coded with mutually exclusive or non-mutually exclusive categories.
First, we define a combination of coders when they encode the same items.
For instance, consider a team of three coders A, B and C where A and B code
100 data points, and C codes 50 of those 100 data points. Therefore, (A,B) is
a combination of 100 data points, and (A,B,C) is a combination of 50 data
points. When coders encode a different number of items between them, there
will be multiple combinations. We thus define agreement as follows:

– Mutually exclusive categories: Since coders may apply only one category
for a given item, only one agreement is considered per text. If more than half
the coders agree on any category, then agreement is 1, otherwise 0. This is
the same definition of agreement used in Cohen’s kappa [6].

– Non-mutually exclusive categories: Since coders can apply more than
one category to the same items and that the presence of a category does
not mean the absence of other categories, agreements are considered per
category. If one category is applied by more than half the coders in the
combination or by none of them, then we count agreement for that code.
If all coders agree that one category is not present, they reflect an implicit
consensus within coders i.e. agree [11].

3.2 Calculation of Generalized Cohen’s kappa

To calculate observed agreement (ρ′o), we identify agreements across a dataset
of N items depending on the type of categories used, mutually exclusive or
otherwise, as described above. We calculate ρ′o identically as Cohen’s kappa.

ρ′o =
#items with agreement

N
(4)

To calculate chance agreement (ρe) we use MC simulations to generate
encodings of all items by computing probabilities of each coder applying each
category. The probability (ρ categoryic) that a coder i uses a given category is
calculated by dividing the number of times (nic) the coder uses the category c
by the number of categories (Ci) used by the coder in all items coded.
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ρ categoryic =
nic

Ci
(5)

Then we compute the probability (ρ numberin) that coder i uses x categories
per item as the number of items nxi coded with x categories divided by the total
number of items coded (Ni).

ρ numberin =
nxi

Ni
(6)

To simulate the encoding of each datum by each coder in a combination, we
randomly select the number of categories and the categories the coder will apply
based on their probabilities ρ category and ρ number. In every simulation, we
calculate variations in agreement in comparison to a stability threshold, ex-
plained in Section 3.3. After satisfactory simulations, we calculate total chance
agreement ρe by averaging the simulated observed agreements of each combina-
tion weighted by the fraction of the overall dataset coded by each combination.

Finally, Generalized Cohen’s kappa (κ′) is calculated using observed and
chance agreement using equation 3 from Cohen’s kappa:

κ′ =
ρ′o − ρe
1 − ρe

(7)

3.3 Execution time and experimental setup

The execution time of the algorithm depends on different factors, such as number
of iterations needed to achieve the stability threshold, and number of unique
combinations. The simulated datasets vary in size between 2,168 to 25,000 lines.
The average execution time for all datasets is 9.32 seconds with a standard
deviation of σ = 1.45 seconds. All the tests were executed on an AMD EPYC
7302P CPU @3GHz with 64 GB RAM under Debian 10 distribution. The GCK
algorithm was implemented in Python3.

For MC simulations, we determined the stability threshold i.e., the value
below which future simulations will not have significant variation, a common
practice when using MC simulations [20]. After extensive testing, we set the
stability threshold to 1 × 10−4, ensuring stability in chance agreement to the
third decimal place with an average standard deviation of 2× 10−3.

Generating simulated datasets. We simulated several datasets, each with
different characteristics, for extensive testing of the GCK. With different permu-
tations of the parameters (number of coders, number of categories, and number
of items encoded) with initial agreements from 0.0 to 1.0 in increments of 0.05,
we obtained 21 simulated datasets for each set of parameters.

With these simulated datasets, our goal is to observe how chance agree-
ment and kappa scores change when observed agreement changes in the GCK
algorithm, and to understand the impact individual parameters have on overall
kappa score. We will thus be able to understand the behavior of GCK in different
settings and how it compares to Cohen’s kappa.
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3.4 Dataset and Parameters

Our data is a subset of 2000 reviews, from Yin et al.’s [24] fanfiction reviews
dataset consisting over 176 million reviews, manually qualitatively coded by 7
different coders using two different categories: emotions, and valence. Emotion
categories are non-mutually exclusive, and valence is mutually exclusive.

To compare GCK with Cohen’s kappa, we tested them under the precon-
ditions of the latter: mutually exclusive categories (valence), and two coders
encoding 2000 reviews. We observe

(
7
2

)
= 21 combinations of coders exist, as

shown in Table 2, and calculate GCK values for each combination.

Table 2: Pairwise combinations P(i,j) of coders i and j.

Coder id

1 2 3 4 5 6 7

C
o
d
e
r

id

1

2 P(1,2)

3 P(1,3) P(2,3)

4 P(1,4) P(2,4) P(3,4)

5 P(1,5) P(2,5) P(3,5) P(4,5)

6 P(1,6) P(2,6) P(3,6) P(4,6) P(5,6)

7 P(1,7) P(2,7) P(3,7) P(4,7) P(5,7) P(6,7)

4 Results

In our experiments, we study how GCK performs in comparison to Cohen’s
kappa under the latter’s preconditions. We establish that they perform similarly,
and then extend GCK to situations using non-mutually exclusive categories.

4.1 Comparison of Chance Agreements

The primary way in which GCK differs from Cohen’s kappa is in its calculation
of observed agreement. GCK computes chance agreement in the same way that
Cohen’s kappa does. Therefore, before comparing the performances of GCK and
Cohen’s kappa, we first need to establish that our algorithm for calculating
chance agreement via MC simulations does indeed compare well to the chance
agreement of Cohen’s kappa algorithm.
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We computed chance agreements on the data referred to in Section 3.4, using
the pairwise combinations of coders in Table 2. Because of the randomness in
the MC simulations, we calculate chance agreement 10 times per pairwise combi-
nation and report means. Figure 1 shows the chance agreement scores obtained
by the two metrics. We observe that the results are similar in every pairwise
combination of coders. The average difference between chance agreements be-
tween both metrics is 2× 10−3 with a standard deviation of σ = 1× 10−3, thus
confirming the validity of our chance agreement calculations.
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Fig. 1: Comparison of the chance agreement by pairwise combinations of coders.
The x-axis represents the 21 different pairwise combinations while the y-axis
represents the chance agreement. Both metrics are color-coded, Cohen’s kappa
in purple and Generalized Cohen’s kappa in yellow.

4.2 Comparison to Cohen’s kappa

To compare the overall performances of GCK and Cohen’s kappa, we use the
same data referred to in Section 3.4, and the pairwise combinations of coders
in Table 2. We calculate observed agreement and GCK 10 times per pairwise
combination and report means. Figure 2 shows kappa scores for Cohen’s kappa
and GCK. We observe similar results for both metrics with an average difference
of 2× 10−3 and a standard deviation of σ = 1× 10−3.



8 Figueroa et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

Cohen's kappa Generalized Cohen's kappa

Pairwise combinations of coders

K
ap

p
a 

sc
o
re

Fig. 2: Comparison of kappa scores by pairwise combinations of coders. The x-
axis represents the 21 different pairwise combinations while the y-axis represents
the kappa score. Both metrics are color-coded, Cohen’s kappa in purple and
Generalized Cohen’s kappa in yellow.

4.3 Applying GCK to extended situations through simulation
experiments

In this section, we extend GCK to situations involving non-mutually exclusive
categories, and test it by varying the number of coders and in cases of unequal
amounts of coded data. We first examine the relationship between observed
agreements and the resultant values of Cohen’s kappa, as depicted in Figure 3.

Since we intend to understand the behavior of GCK with non-mutually ex-
clusive categories, the probability of applying one, two, up to n categories to one
item by one coder was obtained from the manually qualitatively coded data from
the fanfiction reviews using the non-mutually exclusive taxonomy of emotions.
We simulated a variety of datasets for different parameters, as mentioned in
Section 3.3, and generate random encodings per coder and item. For each item,
we calculate agreements and categorize them into levels of agreement, ranging
from 0 to n, where n is the number of categories. Table 3 provides an example
of levels of agreement for n = 3.

As before, to account for the randomness in the simulation, all results pre-
sented here will be means of 10 executions with different seeds under the same
parameters. Different experiments vary different parameters of the simulated
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Fig. 3: Cohen’s kappa scores varying with observed initial agreements. The two
variables are seen to have a linear relationship.

datasets to understand how they affect the final Generalized Cohen’s kappa
score. We applied the GCK algorithm on each dataset with varying initial agree-
ments. Figure 4 displays the behavior of the GCK with 3 coders, 5 non-mutually
exclusive categories, and 1000 items.

Varying number of coders. We varied the number of coders from 2 to 5,
maintaining the number of texts and categories constant at 1000 texts and 5
mutually-exclusive categories. We simulated 21 datasets for each set of param-
eters with initial agreement from 0.0 to 1.0. We expected that the number of
coders would change the minimum value of the kappa score as different num-
bers of coders have different likelihoods of obtaining agreement with the same
number of categories. These results are represented in Figure 5.

Varying number of categories. Similar to the previous subsection, we varied
the number of non-mutually exclusive categories while maintaining the number
of texts as 1000 and the number of coders as 3. The numbers of categories tested
are 3, 5, and 7. These results are represented in Figure 6.

Varying number of items coded. Finally, we varied the number of encoded
items with the number of coders set to 3 and the number of non-mutually ex-
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Table 3: Description of the level of agreements for 3 categories.
Level of Agreement Description
0 Every coder disagrees on every category in the text.
1 Coders agree only on one out of three categories
2 Coders agree on two out of three categories
3 Coders agree in all categories

clusive categories to 5. We expect that this would have an impact on the kappa
scores as the probabilities of achieving agreement or disagreement remain the
same regardless of the number of texts. Figure 7 shows the kappa scores of the
simulated datasets with different initial agreements and number of texts.

5 Discussion

5.1 Establishing GCK as a viable alternative to Cohen’s kappa

As discussed in Section 4, the primary objective during testing was to first
establish that, under the preconditions of applying Cohen’s kappa, GCK would
perform similarly. We show this first by testing the accuracy of the chance agree-
ments generated by MC simulations and comparing those values to the chance
agreements calculated by the Cohen’s kappa algorithm, and then compare the
overall metrics.

In Section 4.1, we demonstrate that the chance agreements calculated by the
GCK algorithm are similar to those reported by the Cohen’s kappa algorithm.
This validates that MC simulations are a good approximation of chance agree-
ment, and allows us to proceed with the overall comparison of the two metrics.
We then observe, in Figure 2, the values are very similar to each other. In com-
bination with the results in Section 4.1, these results validate our method of
calculating observed agreement and demonstrate that under the preconditions
of applying Cohen’s kappa, the GCK performs similarly.

We also observe that both Cohen’s kappa and GCK have a linear relationship
with observed agreement, as shown in Figures 3 and 4 respectively. This further
strengthens our claim of interchangeability between those metrics under the
conditions of Cohen’s kappa.

5.2 A metric for a wide range of situations

Having demonstrated that the MC simulations provide good estimates of chance
agreement in Section 4.1 and that GCK performs similarly to Cohen’s kappa in
Section 4.2, we now aim to extend GCK to situations involving non-mutually
exclusive categories. We confirm the stability of GCK by testing with variable
numbers of coders encoding unequal amounts of data, varying each of these
individually while keeping the others consistent. We do so by demonstrating
that the linear relationship between observed agreement and GCK does not
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Fig. 4: Generalized Cohen’s kappa scores of simulated datasets with varying ini-
tial agreement.

change when considering non-mutually exclusive categories, and while changing
other parameters.

In Figure 4, we observe a perfectly linear relationship between observed agree-
ments and GCK values when testing on data coded with non-mutually exclusive
categories, with an observed agreement of 1.0 generating a GCK score of 1.0,
similar to the situation in Figure 3.

Figure 5 shows GCK scores varying linearly as expected, when varying num-
bers of coders. The similarity between trends for 4-5 coders are comparable as
those for 2-3 coders. This can be explained by the majority within those numbers
of coders: 2 for 2-3 coders and 3 for 4-5 coders. This affects how agreement is
counted in each case e.g. if we have a majority vote within 4 coders, adding one
extra will not change the result.

From Figure 6, we observe that the number of categories does not drastically
change GCK scores. The range of values is the same in all cases and there is a
slight change in the curve of each number of categories. This can be explained.
With 3 categories and 3 coders, it is difficult to have an agreement level of 0,
because each coder can apply multiple categories to the same text and agreement
by absence is more likely to occur, thus decreasing the kappa score. With 5
categories, there is a balance between the number of categories and coders where
it is less likely to have a higher chance agreement, resulting in a higher score.
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Fig. 5: Generalized Cohen’s kappa scores of simulated datasets with varying ini-
tial agreement and number of coders. The number of coders is color-coded and
represented with labels.

Finally, with 7 categories, the choices are much more, and it is more possible to
have an agreement by absence, thus decreasing the kappa score. This shows how,
based on likelihood, the approximation of chance agreement of MC simulations
remove agreement that would occur by chance only. Thus, GCK behaves well
with varying numbers of non-mutually exclusive categories.

Finally, the occluding nature of all the lines in Figure 7 indicate that the num-
ber of texts is not a determining factor, and that GCK still maintains a linear
relationship to observed agreements. Therefore, based on these extensive tests,
we determine that Generalized Cohen’s kappa can be used under the precondi-
tions of Cohen’s kappa, as well as in situations consisting of variable numbers of
coders using non-mutually exclusive categories on unequal numbers of items.

5.3 Explaining dissimilarities in edge values

The main observed difference between GCK and Cohen’s kappa is for edge values.
From Figures 3 and 4, we observe that though both metrics show similarly linear
relationships with observed agreement, they differ in their ranges of values. While
GCK shows a minimum value of -1.238, Cohen’s kappa’s minimum is -0.249. This
dissimilarity can be explained by the difference in the procedure of agreement
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Fig. 6: Generalized Cohen’s kappa scores of simulated datasets with varying ini-
tial agreement and number of categories. The number of categories is color-coded
and represented with labels.

calculation. While Cohen’s kappa considers coders agreeing or disagreeing on
each datum, GCK’s agreement is considered both per datum and per category.
With 3 coders and 5 codes, agreement can go from 0-5 in each datum, making it
much less likely to have 0 agreement in every datum than Cohen’s kappa. Thus,
chance agreement is likely to be higher for GCK since the MC simulations will
have higher agreements, ultimately resulting in lower GCK scores than Cohen’s
kappa with observed agreements closer to 0.

5.4 A detailed understanding of agreement

One of the disadvantages of current IRR metrics is that one score is awarded
to the whole qualitative coding process, which can be unrepresentative of agree-
ment distributions among coders and categories. We overcome this drawback by
reporting additional data of changes in agreement between different combina-
tions of coders and categories. This can be helpful in agreement discussions to
obtain deeper understandings of disagreement, removing the need of guessing
which category or combination of coders did or did not agree.
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Fig. 7: Generalized Cohen’s kappa scores of simulated datasets with varying ini-
tial agreement and number of texts. The number of texts is color-coded and
represented with labels.

6 Conclusion and Future Work

Through this work, we present a novel algorithm to calculate inter-rater agree-
ment: the Generalized Cohen’s kappa. We demonstrate that it performs sim-
ilarly to the widely-accepted Cohen’s kappa under the latter’s preconditions,
and then demonstrate its viability in situations involving non-mutually exclu-
sive categories. We find GCK to be stable under a variety of qualitative coding
situations, such as using non-mutually exclusive categories being used by large
teams of coders on large datasets.

We acknowledge that some known issues of Cohen’s kappa are also carried
forward into GCK. Some examples are reporting different agreements in data
with the same initial agreement but different distribution of the data [15], and
having high rates of Type I errors, meaning it reports higher scores than actual
agreements [7,8]. We also note that applying a numeric metric to the qualitative
coding process is not ideal, since it obscures so many aspects of the process. We
aim to provide more intermediate information to overcome this issue, but there
is still some loss of information in computing GCK, as with any metric.

We believe that using visualizations to supplement GCK scores to provide
a more comprehensive understanding of the coding process, offering support to
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coders to better understand their process and improve their inter-rater reliability
and discussion agreement. We plan to explore this question in future works. We
also intend to examine the potential for GCK to provide intermediate instances of
agreement by different categories and combinations of coders, helping researchers
assess the qualitative coding process at different stages. This can help assist
researchers in refining open-coding taxonomies, or identifying challenges with a
particular combination of coders or a particularly divisive category.

We believe that this novel metric can adapt to different situations and will
allow for a better assessment of inter-rater reliability during and after the qual-
itative coding process. Generalized Cohen’s kappa can assess agreement in dif-
ferent settings present in qualitative coding, such as fixed or varying numbers of
coders and mutually and non-mutually exclusive categories, or combination of
them, making this metric adaptable and helpful for agreement discussions.
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